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J. Phys. A :  Math. Gen. 16 (1983) 1845-1854. Printed in Great Britain 

On the reduction of n-fold tensor products in SU(2) 

W H KlinktS 
Institut fur Theoretische Physik, Universitat Tubingen, D-7400 Tubingen, West Germany 

Received 4 November 1982 

Abstract. A map carrying irreducible representations of SU(2) into n-fold tensor product 
spaces of SU(2) is constructed. It is shown that the multiplicity of an SU(2) representation 
in the n-fold tensor product space is given by certain Gelfand patterns. 

1. Introduction 

It is well known that when the tensor product of two irreducible representations of 
SU(2) is decomposed into a direct sum of irreducible representations, the resulting 
decomposition is multiplicity free. The coefficients that transform between a tensor 
product basis and a direct sum basis, the so-called Wigner coefficients, can be written 
in closed form (see e.g. Hamermesh 1962; for a more technical discussion see e.g. 
Barut and Raczka 1977). However, when the tensor product of more than two 
representations is decomposed into a direct sum, multiplicity appears and it is necessary 
to find some means by which to distinguish between equivalent representations. The 
usual way is to couple representations in a stepwise manner until all the representations 
in the tensor product have been coupled together. Then the labels necessary to resolve 
the multiplicity are the intermediate irreducible representation labels, and the Wigner 
coefficients are sums of products of two-fold Wigner coefficients. 

However, a problem with such an approach is that it does not preserve the symmetry 
that often appears in an n-fold tensor product space. For example, if one wishes to 
compute the Wigner coefficients for the n-fold tensor product j 0 . .  . 0 j ,  it is clear 
that the overall Wigner coefficients should preserve an S ,  symmetry obtained by 
permuting the various factors in the tensor product. Such symmetry appears, for 
example, when computing the states of SU(3) in an SO(3) basis, in which case the 
relevant Wigner coefficients are those appearing in the n-fold tensor product 10.  . .@ 1 
(Klink 1983). 

The primary goal of this paper will be to construct a map from an irreducible 
representation space of SU(2) to an arbitrary n-fold tensor product space in such a 
way that the multiplicity is labelled by irreducible representations of an underlying 
symmetric group. All the representations are treated on an equal footing in the n-fold 
tensor product space, without introducing intermediate angular momenta as multi- 
plicity labels. The representations of SU(2) will be given in terms of polynomials over 
GL(2, e). Since one does not normally realise the representations of SU(2) in this 
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way, 8 2 will review some of the more important properties of such polynomial 
representations, as well as discussing the meaning of n-fold tensor product spaces as 
polynomials over the n-fold direct product of GL(2, C). The actual form and properties 
of the map such as orthogonality properties are discussed in 8 3;  the appendix shows 
how certain matrix elements of the symmetric group needed in the computation of 
Wigner coefficients can be obtained. Section 4 deals with an example, namely how 
to construct the map carrying irreducible representations into the tensor product space 
1 0  10 1/2@3/2.  

One of the main results of this paper is that the multiplicity of an SU(2) representa- 
tion in the n-fold tensor product space is given by certain Gelfand patterns, arising 
from an underlying symmetric group. What we wish to show in the case of SU(2) is 
that the interplay between representations of this underlying symmetric group and 
polynomial representations of SU(2) provides a natural setting in which to compute 
many of the coefficients needed in the application of group theory to physics. 

2. n-fold tensor products from a holomorphic induction point of view 

All the irreducible representations of SU(2) will be realised as polynomials over 
GL(2, C) (Klink and Ton-That 1979); that is, an irreducible representation space for 
the representation ( m )  = ( m l ,  m 2 )  of GL(2, C) is given by 

V'"={f:GL(2, C ) + C , f ( b g )  =by;b;;'f(g)}, f polynomial in GL(2, C). (1) 

Here b is an element of the Bore1 subgroup B of lower triangular matrices, B =  
{(k;; E,,)}, and m l a  m 2  are integers. An irreducible representation is then given by 

(Tg,f)(g) = f ( g g o ) ,  f~ V'", go€ GL(2, C). (2) 

If go is restricted to the subgroup SU(2), the representation space V(m) remains 
irreducible. However, representations related by ( m l  + k, m2 + k), k an integer, are 
now equivalent, so that if k is chosen as -m2,  all inequivalent representations of 
SU(2) can be written as (m,  0). These representations are related to the usual angular 
momentum by m = 2j. 

A natural 'differentiation' inner product exists on V"), given by 

and if go is restricted to SU(2), Tgo is unitary; i.e. (Tg,f, Tg0f ')  = (f, f'). 
An orthogonal basis for V(m) is given by 

where m l  a k 3 m 2  (the Gelfand-Cetlin betweenness relations) and Igl is the deter- 
minant of g E GL(2, C). The basis polynomials (4) are not normalised; in fact, non- 
normalised polynomials will be used in some intermediate calculations because the 
maps needed to obtain Wigner coefficients do not preserve the norm of the polynomials 
with respect to the inner product (3). 

We will consistently denote the unnormalised bases by h:" and normalised 
polynomial basis elements by e;m). If m2 = 0 in (41, the following polynomial realisation 
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for 1 j ,  is)  results: 

From these definitions it follows that an n-fold tensor product space T"= 
V(ml)  0. . .@ V("'n', (mi), i = 1 . , . n, arbitrary representations of SU(2), is given by 

T "  = ( F :  GL(2, C )  x , , , x GL(2, C )  + C, F polynomial, 

F(blg1, * * a t bngn)=r (ml ' (b l )  * .  . r ( m n ' ( b n ) F ( g l ,  * 9 gn)}, (6) 

where v ' " ' ( b )  = byl, bi E B, gj E GL(2, e), i = 1 . . . n. Here (mi)  = (m,, 0) because we 
are considering only SU(2) representations. 

The goal of this paper is to find the map that carries a representation space V'M' 
into T". To that end we define an auxiliary space of r-fold tensor products of the 
fundamental representations (10): 

Tllol = V"o'O. . .O V"O'. (7) 

The map carrying V'M' to T" will be composed from two maps, namely ay',"': V(M'+ 
Tiloj and @: T;lo, + T". ahM) will be discussed in the next section. @ is defined by 

m l  m2 mn -- - 
(8) (@F)(gl,  . 7 g n ) = F ( g l , .  . . ,  g1, gz,, * * gzi.  . . ,  g n ,  * g n ) ,  F E T;lo,. 

The numbers above the GL(2, C) arguments, m l  . . . m,, come from the representations 
(miO), i = 1 . . . n, of the original tensor product space T",  and r = XYZl mi. The map 
@ takes functions F ( g l , .  . . , g,) of Tllo, and sets the first m l  arguments equal, the 
next m2 arguments equal and so forth, so that finally @F is a polynomial function of 
only gl . . . g, arguments of GL(2, C).  

To show that O F  is in T",  it is necessary to check that the conditions of (6) are 
satisfied. But from the definition of @, only the covariance condition is not obvious; 
we must check 

(@F)(blgl,  * 7 bngn) 
m l  m2 m 

"̂ 
=F(blg, ,  . 8 * 9 blgl,'bZgz,. . . ,  b2g;, ' .  - 9 b n g n ,  * 3 bngn) 

x (@.F)(gl, * 3 gn) 

= * ' m ' O ) ( b l ) r ' m q b z )  * . . .rr"n0'(bn)(@F)(g1, . . . , g,) 

so that indeed (@F)(gl , .  . . , g,) is in T". 
Since @ is defined by setting many of the arguments of FE  T;loj equal to one 

another, it follows that for a basis element like e(klp'O. . .@e::'' E T;lo,, nothing is 
changed in @(er:'@. . .Oe'kjO')(gli . . . , g,,) under the interchange of the first ml labels 
k l  . . . k,,, or the next m 2  labels, etc. This fact will be of importance when determining 
the meaning of the multiplicity label q of the map akM' of V'M' to T;lo,, to which 
we now turn. 
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3. The map from V‘M’ to T;lo, 

The index q on the map ahM’ from ViM’ to T;lo, is needed to label the different 
ways in which the irreducible representation ( M )  of SU(2) sits in T;lo). To define 7 
we note that T;loi actually carries representations of SU(2) x S,, where S, is the 
permutation group on r numbers. The representation of S, in T;Io)  is given by 

(9) TP(eL1,(” O .  . .Oeir’) =e$!:, O .  I .@ep(k,), (10’ 

where p ( k i )  is the permutation of the ith index by p E S,. Then the representation of 
SU(2) x S, on basis elements in T;Io,  is given by 

T ( ~ ~ , ~ )  (ekl O .  . . O e r ’ ) ( g l ,  . . . , gr) = (epik,) O .  .Oeb:!:,)(glgo, . . , grgo) 110) (10’ 

=(ei*:)o.. .Oe~O’)(p-’(glgo), ,p-l(grgO)). (10) 

Weyl (as discussed in Robinson (1961)) has shown that T;lo, contains only those 
representations of SU(2) x S, of the form ( M )  = (M1, Mz) ,  whereM1 +Mz = r, M 1  z M z .  
That ( M )  is a representation of SU(2) was shown in § 2 .  On the other hand, all 
irreducible representations of S, are given by Young diagrams (Hamermesh 1962, 
Robinson 1961), and the irreducible representations of interest here are just those 
with M I  boxes in the first row and M2 boxes in the second row. Thus, ( M )  labels an 
irreducible representation of both SU(2) and S, and only those representations of 
SU(2) X S, with M1 +Mz = r, M1 2 M z  can occur in Tilo,, all with multiplicity one. 

Let ekMJ be a basis element of SU(2), of the form hiM)/llhiM’ll, where hiMM’ is 
defined in (4), and let fkM’ be a basis element in an irreducible representation space 
WiM’ of S,. Define a map a : Vkz:~) 0 Wky) + T;Io, by 

a(eLM’OfhM))= ( (10)k l . .  . ( l ~ ) k , ) ( ~ ) k q ) x e i ’ ~ ’ ~ . ,  . ~ e ~ O ’ ,  (11) 
k i .  ..., k ,  

where ( I )  are Wigner coefficients for the direct sum decomposition of T;lo, into 
irreducible representations ( M )  of SU(2) x S,. 

Since Wigner coefficients for multiplicity free decompositions are orthogonal, (1 1)  
can be inverted to give 

Equation (12) can be used to compute the Wigner coefficients. We first introduce a 
projection operator PhM’ which projects out the basis element q of the representation 
( M )  of S,. (The actual form of Plf“’ is given in the last equation of the appendix.) Then 

~lf l ’  (ei’,’’) O. . .Oe::O’) = ( I >a ~f l f “ ’ ) .  (13) 
k 

Now define a map from T;lo, to polynomials over GL(2, e): 

Then 
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where d = (3 do) E GL(2, C). @ ( M f  does not transform to the left with respect to the 
Bore1 group B of (l), but only with respect to the diagonal subgroup of B.  Therefore, 
@(& is not in general an element of V‘’’. But V‘‘’ is in @(M)T;lOl,  because any 
element in v ‘ ~ ’  satisfies (IS) .  

as defined in (14) to both sides of (13) gives So applying 

where KI is a Clebsch-Gordan coefficient (an unnormalised Wigner coefficient) given 
via the differentiation inner product (3). The reason the second line of (16) does not 
yield the Wigner coefficient ( I )  is that does not in general preserve norms. 
That being the case, it is possible to lump all sorts of constants (which may depend 
on ( M ) ,  k or 77-such as IleiM’II) in KI, and then after having computed KZ, normalise 
to get ( I ) .  That is, after KI has been computed according to (16), for fixed ( M ) ,  k, 
77, square and sum the entries in kl . . . k,. The square root of this normalisation factor 
divided into K Z  then gives the Wigner coefficients (I). 

Assuming now that the Wigner coefficient ( I )  is known, we can return to the goal 
of this section, namely to define a map carrying V‘M’ to T;lo,  : 

where 77 is now to be understood as a multiplicity label arising from basis elements 
of the ( M )  representation of S, .  

(18) (@a, ek )(a,. . . ,gfl)= C (I)xQ,(eLl:’o.. .@ei:O’)(gl,. . . , gn) 

carries the basis element e iM1 of V‘’’ into the tensor product space T”. From (18) 
it is clear that the first m l  polynomials e::’(gl). . . eL;:(gl) are symmetric in gl, the 
next m2 polynomials are symmetric in g2 etc. But this means that only when the 
representations of the subgroup S,, x . , . x Smn are the symmetric (identity) representa- 
tion will the map be non-zero. If any of the representations of the groups Sm,, 
i = 1 . . . n, are not the identity representation, then the sum in (18) will give zero, 
because the Wigner coefficients will transform under the k l  . . . k, sum as a non-identity 
representation, while the polynomials eil:’(gl) . . . are symmetric under the interchange 
of these indices. 

We conclude that the multiplicity 7, the number of times ( M )  is contained in T”, 
is given by the number of times the identity representation of the subgroup S,; x . . . x 
Smn is contained in the representation ( M )  of S,. But as shown in Kramer er a1 (1981), 
this is nothing other than the number of Gelfand patterns that can be formed with 
M1M20.  . 0 at the top of the pattern and ml at the bottom. The betweenness relations 
demand that below M1M20.  . . 0 a representation of Sr-“ should fit, below that a 
representation of Sr-mn-mm-l and so forth until the last entry of the pattern, namely 
ml, results. An example of how such computations are made will be given in Q 4. 

We must now show that @ah’’eLM’ is orthogonal in T”. In general Q,ahM’eiM’ 
will not be normalised since @ does not preserve norms, but ll@akM’eiM’ll is readily 
computed using the differentiation inner product (3). Now for a fixed ( M )  we have 
seen that a ( V‘MIO W(M))  is irreducible in SU(2) x S,. Since Q, intertwines with T,, 
we conclude-using a theorem in Naimark (1964)-that @a yOeiM’ is orthogonal in T“. 

Apply the Q, map of (8) to both sides of (17). Then 
(M’ (M) 

kl ... k, 
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To conclude this section we compute the Wigner coefficients for ( M )  in T”. These 
coefficients, not to be confused with ( I ) ,  the Wigner coefficients of ( M )  in T;lo) given 
by (16), are obtained by writing a typical product of (10) basis elements as an (mi) 
basis element. We illustrate with the case of (ml): 

(19) 

where there is no q on the projection operator Pcml) since the identity representation 
of S,, is one dimensional. Then from equation (18) 

p ( m , )  ( e k ,  (10) 0.. .oe(k‘_Ol)(g)=C ((10)kl,. . . , (lO)kmljmrk)cY(m”eLm”, 
k 

K;m,) k , , , , k , , , ,  (10) ... (10) = (e(kml), @z(ml)(eL1:) 0. . .@t?L:f_ol)) 

a k  a m 1 - k  k , +  ...+ k ,  m , - ( k , +  ...+ k ,  ) 
- k m , - k  gll ‘ g  12 Ig=o 

= k ! ( m l - k ) ! S k , k , +  ...+ k , , .  (20) 

-1 /2s 

a g l l  a g 1 2  

For a fixed ml and k ,  these entries are all equal. Therefore, the Wigner coefficients 

((10)kl, * 9 (10)kmI I (ml)k)  = (N;,...k,,,, ) k , k l +  ...+ k , , ,  

where N~l.,.k,,,l is the number of ways that ki, i = 1 . . . ml, can be chosen either 0 or 
1 so that ZY=l ki = k. Then 

@a ;ye if“’ = C ((10)k1,. * * 9 (10)kr I ( ~ ) k ~ ) x ( ( 1 0 ) k l ,  * * 7 (10)kmJmlkl) 
k l +  ...+ k , = k  

x . .  . x ( ( I o ) ~ ~ - ~ ~ ,  . . . , ( l O ) k m , I m , k , ) x e ~ ~ ” O .  . .OeLrn’ 

which means that the Wigner coefficients are given (up to a normalisation factor) by 

((mdK1, . . . , (m,)K,, I ( M ) k v )  = ((10)kl, . . . , (10)k, I(M)kq)  
k1 +...+ k,= k 

where the Wigner coefficients on the right-hand side of (21) are given by (16) and (20). 

4. An example 

To illustrate how the general formalism works, we discuss a simple example, namely 
the tensor product 1 0  1 0  1 / 2 0 3 / 2 .  The multiplicity is easily obtained by stepwise 
coupling the representations. The final result is 

Representation ( M )  Multiplicity Dimension 

9 x 1 =  9 
7 x 3 = 2 1  

3 x 5 = 1 5  
1 x 2 =  2 

5 X 5 = 2 5  (22) 

72 
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The dimension of T4 = V'@ VI@ V'l2@ V 3 / 2  = V'*O'@ V'20'@ V"O'@ V"O' is 72. 
From (7) we see that r = 8, so that T:lo, = V"o'@. . .O V"O' is an eight-fold tensor 
product of fundamental representations with an underlying Ss symmetry. The direct 
sum decomposition of Tflo, is given by the Ss irreducible representations: 

Representation ( M )  Ss dimension Dimension 

256 

where 256 is the dimension of T:lo,. 
The numbers in the 'SS dimension' column give the multiplicity of ( M )  in TFlo,, 

and are always greater than or equal to the corresponding multiplicity of T4 in (22), 
indicating that the CJ map from TFIo, to T4 has reduced the multiplicity. 

To obtain the multiplicity using the arguments following (18), we must find the 
number of times that the identity representation of S2 x S2 x S1 x S3 is contained in the 
( M )  representation of S8. But this is given by a Gelfand pattern with ( M )  at the top 
of the pattern, a representation of Ss with representations 'between' ( M ) ,  next a 
representation of S4 'between' the Ss representation, and finally the symmetric rep- 
resentation 2 of S2 'between' the representation of S4. We get 

Representation ( M )  Gelfand patterns Multiplicity 

j = 4  (890)  8000 
5 00 
40 
2 

3 (731) 7100 
500 
40 
2 

2 ( 6 2 )  6200 
500 
40 
L 

1 (533) 5300 
500 
40 

0 (4,4) 4400 
410 
40 
2 

7100 
410 
40 
2 

6200 
410 
40 
2 

5300 
410 
40 
2 

4400 
410 
31 
2 

7100 
410 
3 1  
2 

6200 
410 
31 
2 

5300 
410 
3 1  
2 

6200 
320 
31 
2 

5300 
320 
31 
2 

1 

3 

6200 5 (24) 
320 
22 
2 

5300 5 
320 
22 
2 

2 

and these multiplicity numbers agree with the multiplicity of (22) obtained by stepwise 
coupling. 
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To each of these Gelfand patterns 77 corresponds a matrix element d h y ) ( p ) ,  p E Ss, 
which is used in the projection operator PW’, needed to compute the Wigner 
coefficients which define the map a h‘). It is this connection between 77 as a multiplicity 
label and v as a label in the S S  matrix element that makes it possible actually to 
compute the needed Wigner coefficients. 

5. Conclusion 

We have shown how to construct a map carrying basis elements ei’’ of the 
representation space V‘M’ of SU(2) into the n-fold tensor product space T“. The 
multiplicity label 77 corresponds to the number of possible ways the representation 
( M )  of S, contains the identity representation of the subgroup S,, x . . . x S,, of S,.  
But this in turn is given by Gelfand patterns, as discussed in the appendix. These 
Gelfand patterns also specify matrix elements of S, needed in the actual computation 
of the ahM) map. 

The composition map @a If”’ is given through Wigner coefficients calculated from 
(14) with the help of the S, matrix elements. Thus (@a, e k  )(gl , .  . . , gn) is a 
polynomial in the space T” involving n GL(2, C) variables and the Wigner coefficients 
(22). Rather than try to find a closed form representation for such polynomials, it 
makes more sense to program a computer to compute the S, matrix elements and 
then differentiate the polynomials needed to get the Wigner coefficients. In fact, this 
seems to be the general situation when using holomorphic induction techniques. 
Representations of the compact groups are given in terms of certain polynomial 
variables coming from the complexification of the compact group, and the coefficients 
such as Wigner or Racah coefficients involve projecting out certain polynomials and 
differentiating them. 

For example, once the polynomials @ahM)e(kM) are known (equation (21)), it is 
possible to compute Racah coefficients; Racah coefficients are normally defined as 
the overlap coefficients between two different stepwise coupling schemes, and can be 
shown to be sums of products of twofold Wigner coefficients. But @ahM’eiM’ does 
not rely on a stepwise coupling procedure. Hence, if e\M) is a polynomial basis in T” 
obtained by stepwise coupling, the numbers (e\?, @ahMfl’ekM’) will give the overlap 
between the stepwise scheme y and the scheme 7 ; the coefficients ( , ) are again given 
by differentiating polynomials, using (3). Racah coefficients giving the overlap between 
two different stepwise schemes are then given with respect to the standard scheme 
@ahM’ekM’, as is the case with the PoincarC group (Klink 1975). 

Finally it should be pointed out that in the n-fold tensor product jl 0. . .@in, no 
further symmetries due to the interchange of identical representations appearing in 
the tensor product have been taken into account. But for tensor products such as 
i 0. . . Oi, new symmetries arise precisely from such possible interchange. If one 
demands certain symmetry types, the multiplicity calculated in § 3 will, of course, 
change; here the notion of plethysm (Littlewood 1950, Wybourne 1970) appears, a 
topic which will be discussed in a succeeding paper. For example, if one requires in 
the tensor product 1 0  1 0  1 / 2 0 3 / 2  discussed in Q 2 that only the symmetric part of 
1 0  1 appear, then the multiplicity of (22) reduces to 1, 2, 3, 3, 1, respectively. 

Although only SU(2) has been analysed in this paper, the ideas used all generalise 
to the SU(m) (and even to the SO(m) and Sp(2m)) groups. In succeeding papers we 
will show how the interplay between the representations of the symmetric group, 

( M )  ‘MI 
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supplying the multiplicity labels, and the polynomial character of the representations 
of SU(m)  allow one to decompose arbitrary n-fold tensor product of representations 
in arbitrary (i.e., in general, non-Gelfand) bases. 
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Appendix 

The space Tllo, (equation (7)) has associated with it an underlying group S,, whose 
irreducible representations ( M )  are related to the angular momentum j of the rep- 
resentations being mapped into T” by MI +M2 = r ,  MI - M2 = 2j, with r = X,=I m,. 
The dimension of the representation ( M )  of S, gives the multiplicity of the representa- 
tion ( M )  of SU(2) in Tilo,. A basis in the ( M )  representation of S ,  is given by the 
labels of a subgroup of S,; a natural choice in light of the 0 map is the subgroup 
S, ,  x . . . x Smn of S,, for when the 0 map is composed with ahM), only the identity 
representation of S,, x . . . x S,, survives. Hence, the multiplicity label 7 refers to the 
different ways in which the representation ( M )  of S ,  contains the identity representation 
of the subgroup S,, x . . . x S,,. Kramer er a1 (1981) show that 7 is equivalent to 
certain Gelfand patterns; here we simply summarise those facts that are needed. 

The numbers m l ,  . , . , m, are used to define a Gelfand pattern in the following 
way: we have first that m l  + . . . + m, = r. Take away m,, then ml+. . . +m,,-l= r l  

defines a subgroup S,,, m l  +. . . +mn-2  = r2 a subgroup S,,, until finally only m l  is left. 
The chain of subgroups S, > S,, > . . . > S,, defines a Gelfand pattern of possible 
irreducible representations of the subgroups, with ( M ) ,  the irreducible representation 
of S,, at the top and ml ,  the identity representation of S,,, at the bottom of the 
pattern. Each representation of S ,  is given by a sequence of decreasing integers, and 
these integers must satisfy the betweenness relations with respect to the preceding 
representation. In the example of §4, the tensor product 1 0 1 0 1 / 2 0 3 / 2  gives 
m l  = m2 = 2, m3 = 1 and m4 = 3,  so that the identity representation of S2 x Sz x S I  x S3 
in ( M )  of S s  is needed. The chain of subgroups defining the Gelfand pattern is then 
S s > S s > S 4 > S 2  with rl  = 5 ,  r 2  = 4 .  The irreducible representation (71) of Ss has 
dimension 7. This multiplicity is reduced by allowing only symmetric representations 
of S 2  X S 2  x S1 x S 3 .  According to Kramer et a1 (1981) all such possibilities are given 
by the Gelfand patterns formed by the irreducible representations of the chain, as 
given in (24). 

Once the Gelfand pattern 7 is given it is also possible to compute the matrix 
element d h y ) ( p ) ,  p E S, ,  needed for the projection operator PhM), equation (12). Since 
only the identity representation of S,, x . . x Smn is allowed, the double cosets of S ,  
with respect to this subgroup will greatly simplify the calculation of the matrix elements 
d h y ) ( p ) ,  for if p ES,, then we can write p = hp,,h: where P t k  ES,  is a double coset 
representative, and h, LE S,, x . . . x S,,. Then d h y ) ( p )  = d h y ’ ( p l k ) .  As shown in 
Kramer et a1 (19811, the double cosets are in 1-1 correspondence with a set of 
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non-negative integers kij satisfying Xyz1 ki j  = mi, kij = mi, and the double coset 
representatives can be obtained from these integers. 

Kramer er a1 (1981) also show how to construct generating functions from matrix 
elements of GL(n, C) to obtain the matrix elements dLy)(pii). In a previous publication 
(Klink and Ton-That 1982), we have shown how to compute the matrix elements of 
GL(n, C) in a Gelfand-Cetlin basis using holomorphic induction techniques, so there 
is a natural way actually to obtain the S ,  matrix elements. However, there are 
alternative ways of obtaining S ,  matrix elements, and the method actually used, as 
discussed in the conclusion, will depend on how easily the required numbers can be 
obtained from a computer. 

In whichever way the S ,  matrix elements are obtained, the projection operator 
needed for computing the Wigner coefficients is then given (up to a factor which is 
lumped into the coefficient of KI, equation (16)) by 

where Tp is defined in (9). 

References 

Barut A 0 and Raczka R 1977 Theory of Group Representations and Applications (Warsaw: Polish Scientific 

Hamermesh M 1962 Group Theory and Its Applications to Physical Problems (New York: Addison-Wesley) 
Klink W H 1975 J. Math. Phys. 16 1247 
- 1983 J.  Phys. A :  Math. Gen. 16 1855-67 
Klink W H and Ton-That T 1979 Ann.  Inst. Henri Poincare' A 31 77,99 
- 1982 Ann.  Inst. Henri Poincare' A 36 225 
Kramer P, John G and Schenzle D 1981 Group Theory and the Interaction of Composite Nucleon Systems 

Littlewood D E 1950 The Theory of Group Characters (Oxford: Clarendon Press) p 285ff 
Naimark M A 1964 Normed Rings (Groningen: Noordhoff) p 286 
Robinson G De B 1961 Representation Theory of the Symmetric Group (Edinburgh: Edinburgh UP) 
Wybourne B G 1970 Symmetry Principles and Atomic Spectroscopy (New York: Wiley Interscience) ch 6 

Publishers) 

(Braunschweig: Vieweg) 5 2.5 and references therein 


